The world of AIS (or Automatic Identification System) can often be a confusing one to delve into, with many questions arising such as “what is AIS?”, “why do I need it?”, and “what type of AIS does my ship actually need or have?”
Automatic Identification System (AIS) is an automated tracking system that displays other vessels in the vicinity. It is a broadcast transponder system which operates in the VHF mobile maritime band. Your own ship also shows on the screens of other vessels in the vicinity, provided your vessel is fitted with AIS. If AIS is not fitted or not switched on, there is no exchange of information on ships via AIS. The AIS onboard must be switched on at all times unless the Master deems that it must be turned off for security reasons or anything else. The working mode of AIS is continuous and autonomous.
It is fitted on ships for identification of ships and navigational marks. However, it is only an aid to navigation and should not be used for collision avoidance. Vessel Traffic Services (VTS) ashore use AIS to identify, locate and monitor vessels. The Panama Canal uses the AIS as well to provide information about rain along the canal as well as wind in the locks.
The IMO Convention for the Safety Of Life At Sea (SOLAS) Regulation V/19.2.4 requires all vessels of 300 GT and above engaged on international voyages and all passenger ships irrespective of size to carry AIS onboard.
Class A : Mandated for all vessels 300 GT and above engaged on international voyages as well as all passenger ships.
Class B : Provides limited functionality and intended for non SOLAS vessels. Primarily used for vessels such as pleasure crafts.
AIS operates principally on two dedicated frequencies or VHF channels :
It uses Self Organizing Time Division Multiple Access (STDMA) technology to meet the high broadcast rate. This frequency has a limitation of line of sight which is about 40 miles or so.
How does AIS work exactly? How do we obtain all this data?
Originally, AIS was used terrestrially, meaning the signal was sent from the boat to land, and had a range of roughly 20 miles (also taking into account the curvature of the earth). As ships began sailing further and further away from land, they began sending the signal to low orbit satellites, which then relayed information back to land. This meant ships could sail as far as they like, and we’d always have peace of mind knowing exactly where they are, and how they’re doing.
The AIS system consists of one VHF transmitter, two VHF TDMA receivers, one VHF DSC receiver, and a standard marine electronic communications link to shipboard display and sensor systems. Position and timing information is normally derived from an integral or external GPS receiver. Other information broadcast by the AIS is electronically obtained from shipboard equipment through standard marine data connections.
Although only one channel is necessary, each station transmits and receives over two radio channels to avoid interference and to avoid communication loss from ships. A position report from one AIS station fits into one of 2250 time slots established every 60 seconds. AIS stations continuously synchronize themselves to each other, to avoid overlap of slot transmissions.
It’s pretty easy to install as well, as AIS is generally integrated with ship bridge systems or multifunctional display, but installing a standalone system is as straightforward as plugging in a couple of cables and switching on the plug.
1. Static Information (Every 6 minutes and on request) :
2. Dynamic Information (Depends on speed and course alteration) :
3. Voyage Related Information (Every 6 minutes, when data is amended, or on request) :
4. Short safety related messages
In coastal waters, shore side authorities may establish automated AIS stations to monitor the movement of vessels through the area. Coast stations can also use the AIS channels for shore to ship transmissions, to send information on tides, NTMs and located weather conditions. Coastal stations may use the AIS to monitor the movement of hazardous cargoes and control commercial fishing operations in their waters. AIS may also be used for SAR operations enabling SAR authorities to use AIS information to assess the availability of other vessels in the vicinity of the incident.
AIS contributes significantly to the safety of navigation. All the information that is transmitted and received enhances the effectiveness of navigation and can greatly improve the situational awareness and the decision making process. As an assistant to the OOW, the tracking and monitoring of targets by the AIS as well as determining information on the CPA and TCPA adds great value to the safety of navigation overall. However, the user should not solely rely on the information from the AIS for collision avoidance. AIS is only an additional source of information for the OOW and only supports in the process of navigating the vessel. AIS can never replace the human expertise on bridge!
As with all navigational and/or electronic equipment, the AIS has limitations :
To sum it up, the AIS only improves the safety of navigation by assisting the OOW/VTS or whatever entity. It’s pretty easy to install as well, as AIS is generally integrated with ship bridge systems or multifunctional display, but installing a standalone system is as straightforward as plugging in a couple of cables and switching on the plug.
Read more :
Rheonik Fuel Consumption For Marine Application, Rheonik Coriolis mass flow meters have been used for…
Coriolis Mass Flow Meters For Marine Fuel Consumption Application, Rheonik Coriolis mass flow meters have…
In commercial shipping, now more than ever, fuel consumption measurements are an important part of…
In commercial shipping, now more than ever, fuel consumption measurements are an important part of…
Mengukur konsumsi bahan bakar di sebuah mesin atau engine, disini kita melihat penjelasan bagaimana bahan…
Mengukur Konsumsi Bahan Bakar di Kapal Dengan Fluidwell Tipe F127 Mengukur konsumsi bahan bakar di…
This website uses cookies.
View Comments