Turbin Uap adalah Pesawat tenaga yang merobah tenaga potensial dari uap menjadi tenaga kinetis didalam pipa pancar, selanjutnya tenaga kinetis ini dirobah lagi menjadi tenaga mekanis didalam Roda jalan. Sedangkan mesin uap adalah pesawat tenaga yang merobah tenaga potential dari uap langsung dirobah menjadi tenaga mekanis di poros engkol.
Uap ang menggerakan turbin uap maupun mesin uap diproduksi di ketel uap (steam boiler). Dewasa ini mesin uap sudah tidak, digunakan di kapal lagi, karena tenaga mesin uap jauh lebih kecil dibandingkan dengan tenaga turbin uap, sementara kapal-kapal saat ini cenderung mempunyai Ruang muat yag besar, sehingga ukuran kapal menjadi besar, pada ukuran kamar mesin yang sama, tenyata tenaga turbin uap jauh lebih besar dari pada tenaga mesin uap.
Turbin uap berfungsi sebagai berikut :
a. Turbin de Laval sebagai penggerak pesawat-pesawat bantu.
b. Turbin Zoelly sebagai penggerak generator-generator listrik dan kapal pada unit unit kecil.
c. Turbin Curtis sebagai Roda muka pada turbin gabungan atau sebagai turbin mundur.
d. Turbin Parson sebagai penggerak baling-baling kapal.
Selanjutnya dijumpai lagi turbin gabungan yaitu beberapa turbin (biasa 2 unit turbin) digabungkan dan dipasang serie pada satu poros (rotor) turbin, dengan maksud kelemahan-kelemahan turbin yang satu dapat terkompensasi pada turbin lainnya sehingga efeciency dapat diraih.
Jenis – jenis Uap
Uap yang diproduksi di ketel dapat dibedakan dalam beberapa jenis uap seperti :
a. Uap basah ialah uap yang masih mengandung butir-butir air
b. Uap jenuh ialah uap yang tidak mengandung butir-butir air yang mempunyai tekanan tertinggi pada suhu tertentu.
c. Uap panas lanjut (uap kering) ialah uap yang suhunya lebih tinggi dari pada tekanan yang sama.
Prinsip kerja turbin uap
Turbin uap terdiri dari sebuah cakram yang dikelilingi oleh daun-daun cakram yang disebut sudu-sudu. Sudu-sudu ini berputar karena tiupan dari uap bertekanan yang berasal dari ketel uap, yang telah dipanasi terdahulu dengan menggunakan bahan bakar padat, cair dan gas.
Uap tersebut kemudian dibagi dengan menggunakan control valve yang akan dipakai untuk memutar turbin yang dikopelkan langsung dengan pompa dan juga sama halnya dikopel dengan sebuah generator singkron untuk menghasilkan energi listrik.
Setelah melewati turbin uap, uap yang bertekanan dan bertemperatur tinggi tadi muncul menjadi uap bertekanan rendah. Panas yang sudah diserap oleh kondensor menyebabkan uap berubah menjadi air yang kemudian dipompakan kembali menuju boiler. Sisa panas dibuang oleh kondensor mencapai setengah jumlah panas semula yang masuk. Hal ini mengakibatkan efisisensi thermodhinamika suatu turbin uap bernilai lebih kecil dari 50%. Turbin uap yang modern mempunyai temperatur boiler sekitar 5000C sampai 6000C dan temperatur kondensor 200C sampai 300C.

Klasifikasi Turbin Uap
Turbin Uap dapat diklasifikasikan menjadi beberapa kategori yang berbeda berdasarkan pada konstruksinya, prinsip kerjanya dan menurut peoses penurunan tekanan uap sebagai berikut :
a. Klasifikasi Turbin berdasarkan Prinsip Kerjanya.
1. Turbin Impulse.
Turbin ini merubah arah dari aliran fluida berkecepatan tinggi menghasilkan putaran impuls dari turbin dan penurunan energi kinetik dari aliran fluida. Tidak ada perubahan tekanan yang terjadi pada fluida, penurunan tekanan terjadi di nozzle.
Ciri-ciri dari turbin impuls antara lain :
- Proses pengembangan uap / penurunan tekanan seluruhnya terjadi pada sudu diam / nosel.
- Akibat tekanan dalam turbin sama sehingga disebut dengan Tekanan Rata.
Prinsip Kerja Turbin Impulse
2. Turbin Reaksi.
Turbin ini menghasilkan torsi dengan menggunakan tekanan atau massa gas atau fluida. Tekanan dari fluida berubah pada saat melewati sudu rotor. Pada turbin jenis ini diperlukan semacam sudu pada casing untuk mengontrol fluida kerja seperti yang bekerja pada turbin tipe multistage atau turbin ini harus terendam penuh pada fluida kerja (seperti pada kincir angin).
Ciri-ciri turbin ini adalah :
- Penurunan tekanan uap sebagian terjadi di Nosel dan Sudu Gerak.
- Adanya perbedaan tekanan didalam turbin sehingga disebut Tekanan Bertingkat.
Prinsip Kerja Turbin Reaksi
b. Klasifikasi turbin uap berdasarkan pada tingkat penurunan Tekanan Dalam Turbin.
Ø Turbin Tunggal (Single Stage)
Dengan kecepatan satu tingkat atau lebih turbin ini cocok untuk untuk daya kecil, misalnya penggerak kompresor, blower, dll.
Ø Turbin Bertingkat (Aksi dan Reaksi ).
Disini sudu-sudu turbin dibuat bertingkat, biasanya cocok untuk daya besar. Pada turbin bertingkat terdapat deretan sudu 2 atau lebih. Sehingga turbin tersebut terjadi distribusi kecepatan / tekanan.
c. Klasifikasi turbin berdasarkan Proses Penurunan Tekanan Uap.
Ø Turbin Kondensasi.
Tekanan keluar turbin kurang dari 1 atm dan dimasukkan kedalam kompresor.
Ø Turbin Tekanan Lawan.
Apabila tekanan sisi keluar turbin masih besar dari 1 atm sehingga masih dapat dimanfaatkan untuk menggerakkan turbin lain.
Ø Turbin Ekstraksi.
Didalam turbin ini sebagian uap dalam turbin diekstraksi untuk roses pemanasan lain, misalnya proses industri.
Read more :